I. THE RECENT BONES.

No. 8. Portion of Recent Earbone, Balana mysticetus.

			*		P.	E.	P. E.	
Phosphoric acid (Pg	O ₅),	•			31.66	: 23.67	=1.3377	1
Carbonic acid (CO2)				•	4.77	: 22	=0.5168	
Chlorine $0.038 = (Cl_2 - O)$,					0.029	: 27.5	= 0.0011	1.5612
Sulphuric acid (SO,				363	0.21	: 40	= 0.0053	1
Fluorine (F,),*					0.002	: 19	= 0.0003]
Lime (CaO), .				•	41.52	: 28	=1.4828	1
Magnesia (MgO),				•	0.86	: 20	= 0.0430	1.5550
Potash (K,O),					 0.14	: 47	= 0.0030	1.5758
Soda (Na ₂ O),			•	7.0	1.46	: 31	=0.0470	}
Phosphates of iron a		•	0.20					
Moisture, .				•	7.31			
Organic matter,					11.14			
•					99.30			

No. 11. Portion of Recent Mesorostral Bone of Ziphius, Cape of Good Hope.

Partly decayed. The undecayed portion was analysed.

					W		P.	<u>P.</u> <u>E.</u>
Phosphoric acid ($P_2O_5),$				23.4%		34.64	1.4635
Carbonic acid (CC	رو),				•		6.35	0.2886
Chlorine 0.14 = (C	$l_2 - O)$					***	0.11	0.0039
Sulphurio acid (S	$O_{\rm B}$),						0.05	0.0125
Fluorine (F2),	(1551) (*		¥*	0.032	61
Lime (CaO),					8		40.51	1.4467
Magnesia (MgO),							3.59	0.1795
Potash (K,O),							trace	1.0949
Soda (Na ₂ O),						2 2	2.13	0.0687
Phosphates of iron	and a	lun	ina,				0.36	
Moisture,			•				3.51	
Organic matter,				•			7.49	
							98.77	

^{*} Having found by preliminary experiments that the deep-sea specimens contained appreciable quantities of fluorine, I devoted particular attention to the exact determination of this element. The method adopted was as follows:—A sufficient quantity of ignited material (5 to 20 grms.) was heated with a large excess of pure quartz sand and pure oil of vitriol (previously charged with sulphate of silver to retain the bulk of the chlorine), and the fluoride of silicon formed, after having been filtered through dry asbestos to retain any sulphuric acid that might have come over, passed into water and determined titrimetrically by means of pure standard caustic soda. In the resulting mixture, the chlorine, if present, was determined and allowed for.