The results of the (rough) proximate analyses were as follows:—Found in 100 parts of

							H	Real Pumice.	Quasi-Pumice.
Moisture (100°),	•	•	•	•	•	•		1.0	18.5
Part decomposible				acid,1			•	6.9	84.0
Part decomposible	by l	hot vitriol,	•	•				5.1	44.5
Ultimate residue,	•			•			•	87.0	8.0
						•		100.0	100.0

The ultimate residues were ignited before being weighed and they were analysed in that condition, which, as it now strikes me, may perhaps have been a mistake; but if so it cannot now be rectified. The results of the analyses were as follows:—

Found in 100 parts of purified

								Pumice.	Quasi-Pumice.
Silica,	•		•	•			•	76.41	56.77
Alumina (inclu	iding tro	ice of Fe	O_3),	•	•		15.53	25.21
Lime,	•		•					2.11	9.09
Magnesia,								0.40	1.37
Potash,		•						2.26	3.36
Soda,	•							2.98	4.19
Moisture,	· ·	•	•	•	•			0.20	1.11
								99.89	101.10

Converting these numbers into multiples of SiO2, Al2O8, &c., we have for the

						**	,	Real Pumice.	Quasi.	
SiO ₂ ,	•							1	1	
Al ₂ O ₂ ,		•	n 8	•				0.1186	0.2592	
(or & Al	$_{2}O_{3}),$				9.9			(0.8558)	(0.7776)	
CaO,	•			•				0.0296	0.1716	
MgO,					•			0.0079	0.0862	
K2O,			•					0.0189	0.0878	
Na ₂ O,	•	•						0.0377	0.0714	

or, taking RO as a general symbol for R"O, 3Al2O3, R'2O, we have in multiples of

						SiO ₂	RO
Real Pur	nico,	•				1	0.4499
Quasi,			•			1	1.0946

or, separating the bases into R_2O_3 's and RO's (where RO = CaO, K_2O , &c.)

				SiO ₂	R_2O_3	RO
Roal Pu	mico,			10	1.19	1 (-0.08)
Quasi,		•		4	1.087	1.27

Rammesberg, in his Dictionary of Chemical Mineralogy (quoting from an extensive research by Abich) gives a number of analyses by that chemist, from which it appears that pumices and obsidians (which, with him, are only two forms of the same genus) arrange themselves into two sets—A and B.

Tho					(SiO ₉)s	$(R_2O_3)s$	(RO)s
in A are,					4.5 to 5.5	1	1
in B are,		1.6			6.5 to 8.5	1	
Orthoclase	and al	bite,			6	1	1
General sy	mbols,				n	711	p

¹ By difference; includes combined H₂O. (DEEP-SEA DEPOSITS CHALL, EXP.—1891.)

² Absorbed during preservation in tubes.